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COMPARING CHARGES, LENGTH OF STAY, AND MORTALITY  
FOR A PROVIDER TO AN INTERNAL OR EXTERNAL NORM 

 

INTRODUCTION 
ll Patient Refined DRGs (APR-DRGs) are a patient classification system that 
categorizes patients based on their severity of illness and risk of mortality. In APR-

DRGs there are 314 base APR-DRGs, each of which is subdivided into four subclasses 
for a total of 1256 unique patient categories. There are extensive normative data 
available for APR-DRGs. These normative data include average values of resource 
variables such as length of stay and charges and the percent occurrence of outcomes 
such as mortality. The normative data available include norms by geographic region, by 
different types of hospitals and by payors.  
 
Based on APR-DRGs, individual providers can compare their resource use and 
outcomes to the normative data to determine if their performance differs significantly 
from the normative data. Observed differences between a provider’s performance and 
the norm can represent a true difference in performance or can be caused by random 
variation. Statistical methods can be used to determine which differences in resource 
use or outcomes are true differences and which may be the result of random variation. 
 
The statistical methods give the probability that an observed difference in performance 
between the provider and the norm is due to random variation. A difference in 
performance between provider and norm is considered “significant” if this probability 
is small. A difference is considered significant at the 0.05 level if the probability that the 
observed difference is due to random variation is five percent or less (i.e., less than one 
chance in twenty). Significance at the 0.01 level means that this probability is one 
percent or less. 
 
Three interrelated factors determine whether a difference in performance is significant: 
the number of observations, the magnitude of the observed difference in performance, 
and the variability in performance of the hospital and of the norm. A small number of 
patients, a small observed difference in performance, or high variability within either 
the provider or the norm (i.e., high standard deviation) increase the probability that the 
observed difference is due to chance and does not represent a true difference. 
Conversely, a large number of patients, a large observed difference between provider 
and norm, or low variability within both hospital and norm make it more likely that the 
difference was not due to chance and does represent a true difference. An observed 
difference of the same magnitude may be significant in one comparison and not in 
another. For example, a half-day difference in average length of stay for normal 
delivery, with a large number of patients and low variability, is unlikely to be due to 
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random variation and is, therefore, considered significant. However, for transplant 
surgery with few patients and high variability of length of stay, a half day difference is 
more likely to be due to random variation and not be considered significant. The 
conclusion that a difference is significant indicates that the hospital and the norm have a 
true difference in performance, which is likely to be repeated in future data. For normal 
delivery, an observed difference of a half day may be enough evidence to reach this 
conclusion but the same observed difference may yield only weak, inconclusive 
evidence for transplants.  
 
There are several possible reasons why a difference may not be significant. There may 
be no true difference, and thus, no significant difference in performance is found. 
Alternatively, there may be too few observations or too much variability, or both, so 
that even a true difference can not be detected. Thus, a difference which is not found to 
be significant does not necessarily mean that there is no true difference in performance. 
It may simply mean that there were too few patients or too much variability to conclude 
that there is a true difference. 
 
The comparison of a provider’s performance to a norm requires the use of several 
distinct statistical methods. Resource variables such as length of stay and charges are 
continuous variables that, in general, are lognormally distributed, while outcome 
variables are binary variables that indicate the occurrence or non occurrence of an event 
such as death. Different statistical methods are required for continuous and binary 
variables. Comparisons can be performed for data from a single APR-DRG and subclass 
or can be performed for data pooled across multiple APR-DRGs and subclasses. 
Different statistical methods are required for the comparisons of data within a single 
APR-DRG and subclass versus the comparison of data pooled across multiple APR-
DRGs and subclasses. The norm to which the provider is compared may contain the 
data from the provider. If the norm contains data from the provider, then before any 
statistical tests are performed the provider's data must be backed out of the norm. 
 
This document describes the various statistical methods used to determine the statistical 
significance of the difference between the average value of a resource variable for a 
provider and the average value derived from normative data and the statistical 
significance of the difference between the rate of occurrence of an outcome variable for 
a provider and the rate of occurrence derived from normative data. The statistical 
methods for continuous variables (e.g., length of stay and charges) are presented first 
followed by the statistical methods for binary variables (e.g., mortality). Within each of 
these sections, the statistical method for comparison of data from a single APR-DRG 
and subclass is presented first followed by the statistical method for the comparison of 
data pooled across multiple APR-DRGs and subclasses. Finally, the method used to 
back out a provider’s data from a norm is described. A discussion of the statistical 



A/wkstatn/muenzdoc.doc 

 
© 1996 3M. All Rights Reserved Page 3 

methods described in this document can be found in Cohen, 1977 and Kramer and 
Thiemann, 1987.   
 

CONTINUOUS VARIABLES 
Resource variables tend to have lognormal distributions, meaning that, within a 
homogeneous subclass of patients, the logarithm of these variables (to base e or base 10) 
has roughly a bell-shaped, normal distribution. Since resource variables tend to have a 
lognormal distribution, one might assume that a logarithmic transformation was 
needed to ensure the validity of the statistical comparison. However, a logarithmic 
transformation is not necessary for comparing the average values of resource variables. 
This is true because averages have a normal distribution even if the raw data do not. 
Furthermore, the difference of two averages, under the null hypothesis that the two 
averages are equal, has a symmetric distribution, regardless of the asymmetry of the 
distribution of the underlying observations (Chung, 1968, p. 137). The statistical test that 
compares the difference in two averages will behave correctly (maintain correct type I 
error) when the two averages being compared are based on the non logarithmic scale. 
Thus, the comparison of resource variables will be based on the average value of the 
"raw" observations, not of their logarithms. 
 
There remains an important issue, namely that an average is not the ideal measure of 
central tendency for data with a lognormal distribution, especially when a large 
coefficient of variation indicates a strongly right-skewed distribution (Cohen, Whitten, 
1988, Chapter 4). In such a case, the average may substantially exceed the median with 
the average more sensitive than the median to occasional very large data values. The 
statistical methods used assume that occasional, aberrant, extreme observations have 
been removed from both ends of the data, very small and very large. High and low 
length of stay trim points have been developed for each APR-DRG and subclass. These 
length of stay trim points are used to eliminate aberrant, extreme observations from the 
comparison of average values of resource variables. After eliminating aberrant, extreme 
observations, the comparison of averages is done in the original, non logarithmic scale. 
 
One more technical condition refers to large numbers of values of zero. For example, 
many patients may not have an ICU charge. Thus, the distribution of ICU charges will 
have a “bump” at zero. Such distributions do not represent continuous data and the 
statistical methods described for continuous data do not apply to variables with a large 
number of tied values, such as many values equal to zero. 
 
 
COMPARISON WITHIN A SINGLE APR-DRG AND SUBCLASS 
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OUTLINE OF APPROACH:  The analysis begins by a comparison of variances between the 
provider and the norm. Student's t-tests are then used to compare the provider average 
with the norm average, with the details varying according to the situation.   
 
NOTATION:  There are two groups of data (e.g., a provider and the norm), with m 
observations in the provider and n in the norm.  The observations are   
 
 x11, ..., x1m (provider) and x21, ..., x2n (norm)   
 
Let x1 and x2 be the two averages, Σx1j/m and Σx2j/n, respectively.  The two sample 
variances are 
 s12 = Σj(x1j-x1)2/(m-1) and s22 = Σj(x2j-x2)2/(n-1) 
 
 
COMPUTATIONAL STEPS 
 
If either m or n is five or less the method being used to test the significance of the 
difference in averages is unreliable and no test of significance is performed.  
 
Step 1. CHECK IF THE VARIANCES ARE ROUGHLY EQUAL.   
Compute the ratio  
 
 F = larger of (s12, s22)/smaller of (s12, s22) 
 
Under the assumption that the true variances are indeed equal, this ratio has an F-
distribution with (m-1, n-1) degrees-of-freedom (Madansky, 1988, p.59). If s12 or s22 is 
zero the method being used to test the significance of the difference in averages is 
unreliable and no test of significance is performed. The variances are considered equal 
if the above ratio has a value that is less than 4 and is also below the critical value of the 
F distribution for a one tail test at a 0.001 level of significance.  
 
Step 2. EQUAL VARIANCES FOUND IN STEP 1. 
Compute the two-sample, equal-variance Student's t-statistic.  This is given by 
 
 t* =  (x1 - x2)/√(A*B) where 
 
 A = (1/m) + (1/n) and B = {(m-1)s12 + (n-1)s22}/(m+n-2) 
 
Under the null hypothesis that the true mean of the provider and norm are equal, t* has 
a Student's t-distribution with m+n-2 degrees-of-freedom (Hogg, Craig, 1978, p. 264). 
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The averages are considered to be significantly different if t* has a value outside of the 
critical values of the t distribution for a two tail test at a specified level of significance. 
 
Step 3. UNEQUAL VARIANCES FOUND IN STEP 1.   
  
The two-sample, unequal variance t-statistic is given by  
 t* = (x1 - x2)/√(s12/m + s22/n) 
 
The degrees-of-freedom (Satterthwaite, 1946) are  
 
 df = (s12/m + s22/n)2/(s14/m2(m-1) + s24/n2(n-1)) 
 
Under the null hypothesis that the true mean of the provider and norm  are equal, t* has 
a student t distribution with df degrees of freedom. The averages are considered to be 
significantly different if t* has a value outside of the critical values of the t distribution 
for a two tail test at a specified level of significance. 
 
COMPARISON OF A CONTINUOUS VARIABLE FOR DATA POOLED ACROSS APR-DRGS AND 
SUBCLASSES 
 
OUTLINE OF APPROACH:  The comparison is based on the principle of stratification. The 
average of the provider and the norm are compared separately within each APR-DRG 
and subclass. A weighted average of the difference in averages, one per APR-DRG and 
subclass is formed. If the averages for the provider and norm are equal, the  weighted 
average difference should be close to zero. 
 
NOTATION: 
 

i =  group (1 = provider and 2 = norm) 
j = APR-DRG and subclass combination 
m = mth patient 
K = number of APR-DRG and subclass combinations 
xijm = value of the resource variable for the mth patient in APR-

DRG and subclass combination j in group i 
n(i,j) = number of patients in APR-DRG and subclass combination j 

in group i 
xij = average value of the resource variable for patients in APR-

DRG and subclass combination j in group i 
s2ij = variance of the resource variable for patients in APR-DRG 

and subclass combination j in group i 
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dj = difference between the average in the two groups for APR-
DRG and subclass combination j 

vj = variance of the difference between the average in the two 
groups for APR-DRG and subclass combination j 

Provider 
In subclass 1, there are n(1,1) observations:  x111, x112, ... x11n(1,1), average x11, variance s112 
In subclass 2, there are n(1,2) observations:  x121, x122, ... x12n(1,2), average x12, variance s122 
... 
In subclass k, there are n(1,k) observations:  x1k1, x1k2, ... x1kn(1,k), average x1k, variance s1k2 
 
Norm 
In subclass 1, there are n(2,1) observations:  x211, x212, ... x21n(2,1), average x21, variance s212 
In subclass 2, there are n(2,2) observations:  x221, x222, ... x22n(2,2), average x22, variance s222 
... 
In subclass k, there are n(2,k) observations:  x2k1, x2k2, ... x2kn(2,k), average x2k, variance s2k2 
 
COMPUTATIONS:  For each APR-DRG and subclass the difference in the averages is 
formed for all values of j from 1 to K. 
 

dj=x1j-x2j with variance vj=s1j2/n(1,j)+s2j2/n(2,j) 
 

If there is only one patient for the provider (i.e., n(1,j) = 1) then the variance of the 
provider is estimated as 
  

s21j = (x1j(s2j/x2j))2 

 
The weighted average difference between the provider and the norm is  
 
 D = Σj(dj/wj) / Σj(1/wj) where wj = 1/n(1,j) + 1/n(2,j) 
 
Under the null hypothesis that, within each APR-DRG and subclass combination, the 
true means for the provider and the norm are equal, the quantity D has a normal  
distribution with mean 0 and variance  
 

V = ∑jvj/wj2/(∑j(1/wj))2 
 
Thus, the test of equal means is based on z = D/√V  which is compared to a standard 
normal distribution with mean 0 and variance 1. The averages are considered to be 
significantly different if D has a value outside of the critical values of the standard 
normal distribution for a two tail test at a specified level of significance.  
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In the computatation of the weighted average difference between the provider and the 
norm (i.e., D), wj is based only on the sample sizes. Alternatively, wj could be based on 
the variance of dj  
 

vj=s1j2/n(1,j)+s2j2/n(2,j) 
 

A test statistic computed using weights based on the variance of dj (i.e., vj) would 
produce the highest chance of yielding a true positive finding (i.e., maximum power). 
However, a test statistic computed based on vj is dominated by small values of s21j even 
when n(1,j)  is small. This is particularly true when the sample sizes in the norm are 
large so that s22j/n (2,j) is very small. Thus, although a test statistic computed based on 
vj would have the maximum power, the test statistic based on wj is used since it yields a 
more robust estimate (i.e., less sensitive to small values of s1j2). 
 
Individual providers are unlikely to treat patients in every APR-DRG and subclass. For 
example, most hospitals do not perform heart transplant surgery. Thus, there is the 
expectation that the data for the provider will contain no patients in some APR-DRGs 
and subclasses. In general, norms are derived either from large databases which are 
expected to include patients from virtually all APR-DRGs or from specific patient 
populations (e.g., pediatrics or Medicare) in which data are only present for a subset of 
the APR-DRGs and subclasses. In any comparison of a provider and a norm, those 
APR-DRGs and subclasses in which the provider has no patients (i.e., n(1,j) is zero) are 
not included in the comparison. In addition, APR-DRGs and subclasses in which there 
are either no patients or only one patient in the norm (i.e., n(2,j) is zero or one) are also 
excluded from the comparison. Although the statistical test being used is not very 
sensitive to the number of APR-DRGs and subclasses being excluded, the exclusion of a 
substantial number of APR-DRGs and subclasses due to the presence of either no 
patients or only one patient in the norm raises questions concerning the validity of the 
norm and the generalizability of the results of the comparison. For example, if a 
provider’s Medicare patients were compared to a pediatric norm many of the APR-
DRGs and subclasses present in the provider’s data would not be present in the norm. 
Thus, such a comparison is not meaningful and the results of any test of significance of 
the difference in performance between the provider and norm would not be valid. In 
order to protect against the inappropriate application of a test of significance, if ten 
percent or more of the patients in the subset of the provider’s data being compared are 
excluded from the comparison because there is either no patients or only one patient in 
the norm, no test of significance of the difference in averages between the provider and 
the norm is performed. Since the norm is, in general, expected to contain virtually all 
the APR-DRGs and subclasses in the subset of the provider’s data being compared, the 
exclusion of ten percent of the provider’s patients from the comparison is considered an 
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indication that there is an incompatibility between the provider’s data and the norm 
and, therefore, any comparison would not be meaningful. 
 
If the number of patients pooled across APR-DRGs and subclasses in the provider or 
the norm is five or less the method used is unreliable and no test of significance is 
performed. 
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